Ganglioside GM1 contributes to extracellular/intracellular regulation of insulin resistance, impairment of insulin signaling and down-stream eNOS activation, in human aortic endothelial cells after short- or long-term exposure to TNFα

نویسندگان

  • Norihiko Sasaki
  • Yoko Itakura
  • Masashi Toyoda
چکیده

Vascular insulin resistance induced by inflammatory cytokines leads to the initiation and development of vascular diseases. In humans, circulating TNFα levels are increased during aging, suggesting a correlation between vascular insulin resistance and plasma TNFα levels. Currently, the precise molecular mechanisms of vascular insulin resistance mediated by TNFα are not well characterized. We aimed at clarifying whether glycosphingolipids contribute to vascular insulin resistance after inflammatory stimulation. In this study, we examined vascular insulin resistance using human aortic endothelial cells after treatment with different concentrations of TNFα for different time intervals for mimicking in vivo acute or chronic inflammatory situations. We show that ganglioside GM1 levels on cell membranes change depending on time of exposure to TNFα and its concentration and that the GM1 expression is associated with specific extracellular/intracellular regulation of the insulin signaling cascade. Furthermore, we provide evidence that factors such as aging and senescence affect the regulation of insulin resistance. Our data suggest that GM1 is a key player in the induction of vascular insulin resistance after short- or long-term exposure to TNFα and is a good extracellular target for prevention and cure of vascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term high glucose exposure impairs insulin signaling in endothelial cells

BACKGROUND Hyperglycemia is the hallmark of diabetes and its cardiovascular complications. Insulin plays an important role in the regulation of vascular homeostasis and maintenance of endothelial function. Insulin signaling occurs after binding to the insulin receptor, causing activation of two separate and parallel pathways: PI3K/AKT/eNOS and Ras/Raf/MAPK pathways. AKT phosphorylates eNOS at S...

متن کامل

ATP2B1 gene Silencing Increases Insulin Sensitivity through Facilitating Akt Activation via the Ca2+/calmodulin Signaling Pathway and Ca2+-associated eNOS Activation in Endothelial Cells

Endothelial cell insulin resistance may be partially responsible for the higher risk of atherosclerosis and cardiovascular disease in populations with insulin resistance and type 2 diabetes mellitus (T2DM). A genome-wide association study revealed a significant association between the ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) gene and T2DM in two community-based cohorts from the Korea...

متن کامل

G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells.

BACKGROUND Impaired insulin-mediated vasodilation might contribute to vascular damage in insulin-resistant states. Little is known about insulin regulation of nitric oxide (NO) synthesis in insulin-resistant cells. The aim of this work was to investigate insulin regulation of NO synthesis in human umbilical vein endothelial cells (HUVECs) carrying the IRS-1 gene G972R variant, known to be assoc...

متن کامل

Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin.

BACKGROUND The vasodilatory effect of insulin can be acute or increase with time from 1 to 7 hours, suggesting that insulin may enhance the expression of endothelial nitric oxide synthase (eNOS) in endothelial cells. The objective of the present study was to characterize the extent and signaling pathways by which insulin regulates the expression of eNOS in endothelial cells and vascular tissues...

متن کامل

Tonic inhibition by G protein-coupled receptor kinase 2 of Akt/endothelial nitric-oxide synthase signaling in human vascular endothelial cells under conditions of hyperglycemia with high insulin levels.

G protein-coupled receptor kinase 2 (GRK2) participates together with β-arrestins in the regulation of G protein-coupled receptor signaling, but emerging evidence suggests that GRK2 can interact with a growing number of proteins involved in signaling mediated by other membrane receptor families under various pathologic conditions. We tested the hypothesis that GRK2 may be an important contribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018